Compressed Air Systems

Air Treatment and Control Components

Compressed air is an essential power source for most industries today. It is a safe operation, relatively inexpensive to operate and very reliable. However, compressed air is susceptible to various types of contamination which not only reduces its value as a power source, but can seriously affect the performance of other pneumatic equipment and, therefore, productivity.

Air valves, air cylinders, logic control systems and air tools can malfunction due to air-bome contamination. Air intended for air-gauging, air conveyors, spray painting, instrumentation, automation and food processing can be rendered unusable. Poor product quality and system shutdown due to compressed air contamination can occur frequently. There are many other problem areas associated with compressed air contamination, as numerous companies in differing industries can attest to.

With today's technology, an efficient, cost-effective compressed air system can be designed to provide years of reliable service if the proper air treatment and control equipment is installed. Operating and maintenance costs can be significantly lowered by removal of most contaminants (dirt, rust, pipe scale, oil aerosols, liquid water and water vapor, microscopic particles and oil vapor). With a well-designed air system and the use of quality air treatment and control products, you can realize extended service life of components, increased flow capacity with minimum pressure loss and improved production efficiencies in your manufacturing processes.

Air Treatment and Control

To take the fullest advantage of the benefits that can be derived from using compressed air, it must be correctly and adequately prepared. Clean, dry, regulated air is the comer-stone of an efficient air system. Where necessary, lubricated air may be required to provide dependable operation and satisfactory service life of certain air tools and components.

Dryers

All atmospheric air contains some water vapor. When the air is compressed, the water content for a given volume of air increases. Because of the effects of compression, most of this water vapor turns into damaging liquid water in your air system. Additionally, as air flows through the compressed air line system, the water vapor condenses in the pipeline. This moisture in the pipeline results in rust, scale, clogged orifices, malfunctioning of pneumatic controls, and increased wear of moving parts as it washes away the lubricant

Compressed air dryers reduce the water vapor concentration and can prevent further liquid water formation in air lines. Liquid water and water vapor removal increases the efficiency of air operated equipment, prevents corrosion and clogging, extends the service life of pneumatic components, prevents air line freeze-ups and reduces product rejects.

Filters

Air-borne contamination from the atmosphere, such as dust, water vapor and hydrocarbons enter the air system through the compressor intake. The contaminants, usually 4 million particles per cubic foot, can easily pass through a typical compressor intake filter since over 80% of these particles are less than 2 microns in size. The compressor also contributes to the problem with wear particles, oil vapor and fine

A

aerosols that leak past glands and seals from the oil sump into the compression chamber.

Such contamination in the air system can effect the efficient operation of various pneumatic devices and, over time, damage them. Compressed air filters that are installed upstream of the air devices will remove most of these contaminants. In addition, by design these filters will also remove most liquid water from the air line.

The need for higher quality air is more evident today than in the past To gain improved production efficiencies through automation, more sophisticated, technically advanced pneumatic equipment and instrumentation is being used throughout industry. Due to the critical nature of these applications, the need for extremely clean, virtually oil free air is required. Coalescing (oil removal) and oil vapor removal filters should be used for applications requiring high quality air.

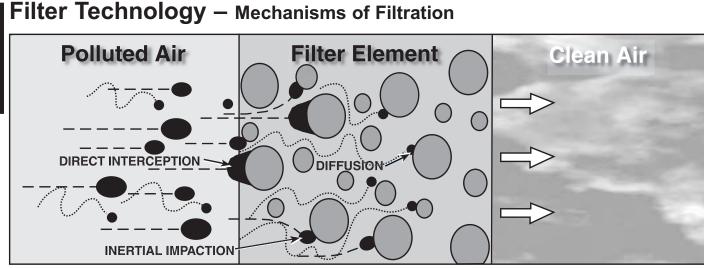
Regulators

All pneumatic devices are designed to provide optimum performance and service life at a specific air pressure. While it is feasible to operate these devices at pressures

in excess of the manufacturer's recommended operating conditions, it is not advisable to do so. Operating at higher pressures can cause excessive wear and damage to the device. Further, operating your compressed air system at a higher-than-required pressure wastes energy and is not costeffective.

To obtain the best operation and service life of your pneumatic equipment use the proper pressure level recommended by the manufacturer. A regulator (pressure control valve) is normally used to reduce and maintain a downstream pressure while the amount of air required to the device may vary with the demand.

Filter / Regulators


The integral Filter /Regulator units combine all the functions and features of a filter and a regulator, as discussed above, into one compact, high performance, spacesaving unit

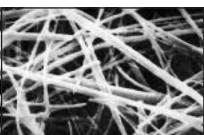
Lubricators

Getting the proper lubrication to the proper device at the proper time is fundamental to preventative maintenance, longer service life and increased productivity. The efficiency of air motors, control valves, cylinders and other air actuators can be greatly enhanced when the proper amount of lubrication is supplied.

Air line lubricators are specifically designed to generate and introduce an oil aerosol (mist) into the compressed air flow. The air flow then carries the oil to the pneumatic devices where the lubricant mist coats the moving and sliding surfaces thus reducing friction and wear.

To provide satisfactory lubrication to your air devices most lubricators have a proportional delivery system. This feature automatically provides a nearly constant oil-to-air ratio over a wide range of air flows. Α

Coalescing Filters


Essentially, coalescing fiters (Type B, B1 and C) rely on what is known as mechanical fitration for their effectiveness. The main mechanisms of mechanical fitration are direct interception, inertial impaction and diffusion. Electrostatic attraction can have some bearing although the efficiency of Wilkerson coalescing fiters is not dependent on this mechanism.

Direct Interception occurs when a particle collides with and adheres to a fber of the filter material without deviating out of the streamline fbw. This mechanism tends to take place on the surface of the filter material and affects mainly larger particles over 1 micron in size.

Inertial Impaction occurs when a particle is unable to follow the tortuous path around the fitter fbers and eventually collides with and adheres to one of the fbers. Typically affecting particles in the Q 3 micron -1 micron size range.

Diffusion or Brownian Novement, as it is sometimes called, occurs with extremely small particles which tend to wander within the gas stream, increasing their chances of colliding with and adhering to a fber. This usually affects particles below Q.3 micron in size. A degree of overlap takes place with the mechanisms, the extent varying on the conditions.



Above: Clean borosilicate microfber seen at a magnification factor of 3900 *Right* The same flter material in a contaminated state at the same degree of magnification.

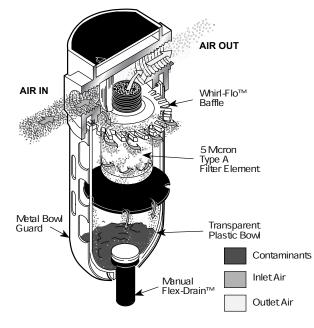
When all mechanisms are combined and utilized by a deep bed of the correct type of fiter material, removal of virtually all particles whether liquid or solid, is achieved.

Pollution Size Chart

To assist in understanding the parameters of fitration, refer to this pollution size comparison chart Look at the size of a major contaminant, **oil aerosol!** It is in the region of QOI - Q8 micron. Tobacco smoke is also

a liquid aerosol in a similar size band QOI -1.2 micron. Observe the smoke test yourself, appreciate the size of the problem! The smallest particle the human eye can see is in the order of 40 microns.

Particulate Filters


For the removal of solid particle contaminants down to 5 microns and the separation of bulk liquids.

This type of fiter is generally used in industrial applications where liquid water and oil, and harmful dirt particles must be removed from the compressed air system. This type of fiter should also be used as a prefiter for the Coalescing (oil removal) fiter.

Operation

Wet and dirty inlet air is directed downward and outward in a circular pattern by the turbine-shaped upper baffe. This action mechanically separates a large amount of the liquid and gross particles, which then fbw down the inside of the bowl, past the lower baffe, into the quiet zone to be drained away. The quiet zone baffe prevents the contaminants from re-entering the air fbw stream.

The partially cleansed air then passes through the fiter element. By utilizing depth fitration, the 5 micron fiter media provides superior fitration, exceptional service life and minimum pressure drop.

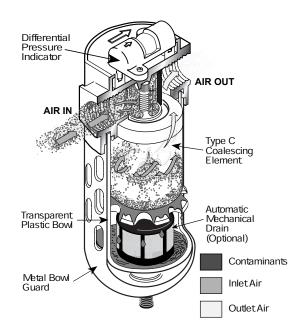
Coalescing Filters (Oil Removal)

VILKERSON

Specifically designed for the removal of solid particles, water and oil aerosols down to QO1 micron. Maximum remaining oil content of air leaving the filter down to QO1ppm at 70°F (21°C) at a pressure of 100 PSIG (6,9 bar g) using a typical compressor lubricant. Two filter element grades are offered to better meet your air quality requirements.

G rade B and B1 filter elements are used for most air coalescing applications where the removal of liquid aerosols and submicronic particles for *general* air quality is required.

Protection of components such as air valves, cylinders, as well as air conveyors, air gaging, air bearings, air control circuits and paint spraying equipment are examples of specific end-use applications. This grade of filter element should be used as a *prefilter* for the *Grade C* coalescing filter.


Grade C high-efficiency flter elements are used where the removal of extremely fine particulate and virtually "oil-free" or high quality air is necessary. Specific end-use applications are protection of critical air control circuits, air logic systems, fbw and temperature controllers, food processing, electronics, health care and flm processing. This grade of flter element should be used as a *prefilter* for the *Grade D* oil vapor removal flter.

Operation

The flter element design utilizes a borosilicate micro fber that provides superior fltration efficiency, quick draining and minimum pressure drop. Unlike standard particle flters, air fbw is inside to out. The compressed air /gas passes through the inner layer of the flter element which acts as an integral pre-flter to remove large contaminants. This gives protection to the layer of high efficiency flter material which substantially removes submicronic aerosols and solids from the air fbw stream. Solid particles are permanently trapped within the flter media.

The fine liquid particles, including aerosols, after initially being trapped by the fbers of the filter media, begin to collect or coalesce forming larger droplets. These droplets, along with other large droplets present, are pushed to the outer surface. Here, the anti-reentrainment barrier collects the droplets as they break free from the micro fber and allow them to gravitate within its cellular structure forming a "wet band" around the bottom of the element.

Clean fitered air /gas passes through the anti-reentrainment barrier above the "wet-band" where the resistance to fbw is less, leaving a quiet zone of no air /gas movement in the bottom of the fiter housing. The separated liquid drops from the bottom of the fiter element and falls through the, without being re-entrained, to the bottom of the fiter housing where it collects to be removed by a drain.

Oil Vapor Filters

Activated carbon element for the removal of oil vapor and oil associated odors. Maximum remaining oil content of air leaving the flter is OOO3 ppm at 70°F (21°C) at a pressure of 100 PSIG (69 bar g). For the *Grade D* flter element, two types of designs are used depending on the size and fbw capacity of the flter housing.

An oil vapor flter is used, in conjunction with a *Grade C* flter element, where the application requires very high air quality. Typical applications are food processing and packaging, pharmaceutical, fermentation, electronics and semi-conductor, and critical air control.

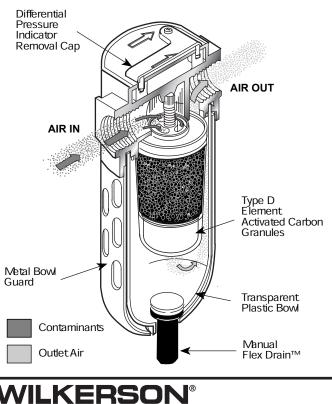
Operation

While the *Grade B, B1 and C* filter elements can remove extremely fine liquid and solid particles, they cannot remove gaseous contaminants such as oil vapor or odors. To do this you must employ the physical phenomena of adsorption. Activated carbon, having an affinity for oil vapor molecules and with an extremely high surface area, created by its capillary structure, is used.

Our activated carbon Grade D flter

elements are designed to maximize the adsorption properties of the carbon. This is achieved by first passing the air through carbon granules located either in an annular space or tubular section. The granules provide a very high ratio of surface area to volume, and when arranged in a deep bed, increases the dwell time of the air fbw. This type of design provides the benefit of both high efficiency and longer service life of the activated carbon.

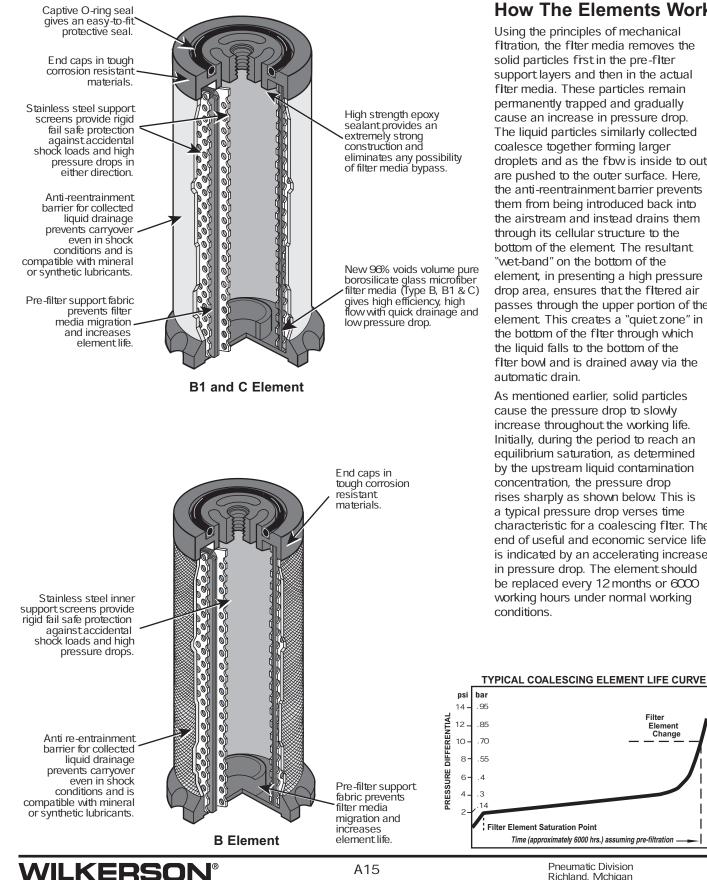
Differential Pressure Indicator (DP2, DP8)


The Wilkerson direct mounting Differential Pressure Indicator is equipped standard on most Coalescing Filter models. It provides a maintenance free means of determining the service life of the filter element. With a new filter the indicator shows all green, and progresses to a full red indication a 7-8 PSID, indicating the element should be changed. The magnified indicator can be easily seen from the top or either side of the filter, and with only one moving part will provide reliability and long life.

The Differential Pressure Indicator cannot be retrofited to Wilkerson fiters ordered without it. It is available as a replacement accessory kit.

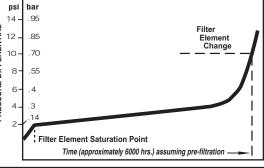
Note: The maximum operating pressure for metal or plastic bowls with this Indicator is 150 PSIG. The maximum operating temperature is 150°F for metal bowls and 125°F for plastic bowls.

DP3 Differential Pressure Gauge


The Wilkerson direct mounting Differential Pressure Gauge (non-pressurized face) is standard on all mainline fitters and it is available as an accessory in kit form. With a scale reading to 20 PSID (1370 m bar dp) the gauge gives a quick indication of the status of the fitter element in the fitter. The gauge provides a reliable method to help ensure that the fitter element is changed at the most economical and convenient time.

Pneumatic Division Richland, Mchigan www.wilkersoncorp.com

A14


Coalescing Elements Features and Benefits Type B, B1 & C

How The Elements Work

Using the principles of mechanical fltration, the flter media removes the solid particles first in the pre-fiter support layers and then in the actual flter media. These particles remain permanently trapped and gradually cause an increase in pressure drop. The liquid particles similarly collected coalesce together forming larger droplets and as the fbw is inside to out, are pushed to the outer surface. Here, the anti-reentrainment barrier prevents them from being introduced back into the airstream and instead drains them through its cellular structure to the bottom of the element. The resultant "wet-band" on the bottom of the element, in presenting a high pressure drop area, ensures that the fitered air passes through the upper portion of the element This creates a "quiet zone" in the bottom of the filter through which the liquid falls to the bottom of the fiter bowl and is drained away via the

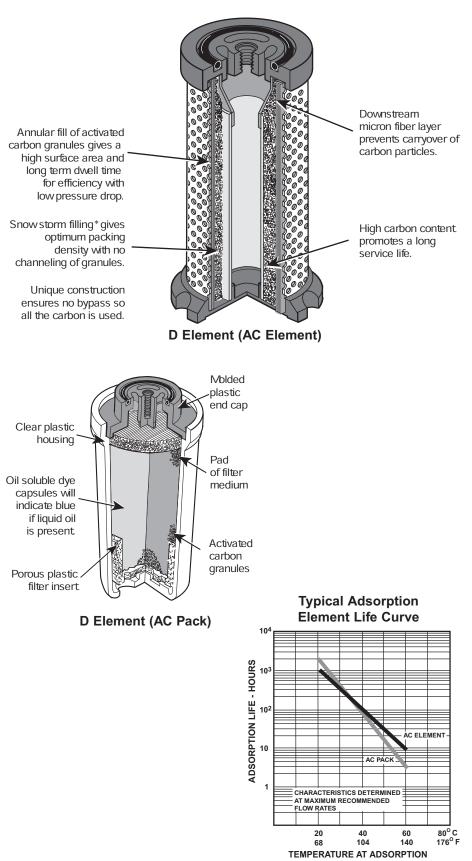
As mentioned earlier, solid particles cause the pressure drop to slowly increase throughout the working life. Initially, during the period to reach an equilibrium saturation, as determined by the upstream liquid contamination concentration, the pressure drop rises sharply as shown below. This is a typical pressure drop verses time characteristic for a coalescing filter. The end of useful and economic service life is indicated by an accelerating increase in pressure drop. The element should be replaced every 12 months or 6000 working hours under normal working

www.wilkersoncorp.com

Richland, Mchigan

Adsorption Elements Features and Benefits Type D

How The Elements Work


While mechanical fltration employing the Type C element is capable of removing extremely fine liquid or solid particles even as small as QO1 micron it cannot remove gaseous contaminants such as oil vapor or odors. To do this we must employ the physical phenomena of adsorption. Activated carbon, having an affinity for oil vapor molecules and with an extremely high surface area, created by its capillary structure, is used for this.

Wilkerson activated carbon elements are designed to maximize the adsorption properties of the carbon. This is achieved by first passing the air through carbon granules, snow storm filed* into either an annular space or tubular section. The granules provide an extremely high surface area to volume and when arranged in a deep bed that increases dwell time gives the benefit of both efficiency and service life. After being passed through the carbon, the air goes through a layer of microfber to prevent migration of fine carbon particles downstream.

Adsorption elements have a limited life and this is affected by many factors but principally temperature. Obviously, the higher the inlet temperature, the more oil vapor there is present, for example at 104° F (40° C) there is more than ten times the oil vapor than at 70° F (21° C). For this reason, activated carbon filters are best installed at the lowest possible system temperature. The type C filter should always precede a Type D filter.

The typical life of an adsorption element is in the region of 1000-2000 hours at 70°F (21°C). Filtration temperature is based on tests carried out on a Chlorobenzene test rig, however, this is best determined in practice by a routine "odor" check.

Oil vapor has a distinct odor. The least expensive and very effective way to check for oil vapor getting through the fiter is to install a small bleed valve downstream. Periodically crack this valve and smell the air. The human nose is extremely sensitive to oil vapor and at the first hint of this odor, change the element

Type B Filter Element **Specifications**

Efficiency

99.97% when tested with 0.3 micron aerosol DOP test Federal Standard 209B. Compatible with mineral and synthetic oils.

Residual Oil

0.5 ppm / wt (inlet temperature /pressure 70°F /100 PSIG) when analyzed using infra red spectrophotometry based on the Pneurop 6611 procedure.

Air Quality Class * Conforms to ISO 8573 Class 3

or better

Flow

Inside to outside

Filter Media

Resin impregnated borosilicate glass microfber

Support Structure

Inner 304 Stainless Steel support cylinder with outer polymeric sleeve.

End Caps

Glass filed polyamide material **Initial Differential** Pressure Dry - 1.5 PSID **Initial Differential** Pressure Wet — 25 PSID Flow range — 5 to 4800 SCFM @ 100 PSIG

Application

Installations as a coalescing prefiter for general purpose protection or as a prefiter to a high efficiency coalescer.

Appearance

White polymeric outer sleeve with black end caps.

* "M" Series Coalescing Filters, with Type "B" 0.5 micron elements: All Wilkerson Type "M' Oil Removal (Coalescing) Filters with Type "B" 0.5 micron elements exceed ISO Class 2 for maximum particle size and concentration of solid contaminants. and exceed Class 3 on maximum oil content (ppm /wt).⁵

Type C Filter Element **Specifications**

Efficiency

99.99998% when testing with 0.3 micron aerosol on dioctyl phylate (DOP) test according to Federal Standard 209B. Compatible with mineral and synthetic oils.

Residual Oil

0.01 ppm / wt (inlet temperature /pressure 70°F /100 PSIG) when analyzed using infra red spectrophotometry based on the Pneurop 6611 procedure.

Air Quality Class *

Conforms to ISO 8573 better than Class 1

Flow Inside to outside

Filter Media

Pure borosilicate glass microfber with a mean strand diameter of Q 5 micron and a voids volume of 96%. Contains no glues or resins.

Support Structure

Inner and outer 304 Stainless Steel support cylinders.

End Caps

Glass filed polyamide material Initial Differential Pressure Dry — 1.25 PSID **Initial Differential** Pressure Wet — 225 PSID Flow range - 5 to 4800 SCFM

Application

Install where highest quality air is required; typically instrumentation, process air, pneumatic gauging, paint spraying, etc.

"M" Series Coalescing Filters, with Type "C" 0.01 micron elements: All Wilkerson Type "M' Oil Removal (Coalescing) Filters with Type "C" QO1 micron elements exceed ISO Class 1 for maximum particle size and concentration of solid contaminants, and exceed Class 1 on maximum oil content. (ppm / wt).⁶

Type D Filter Element **Specifications**

Efficiency

Less than OOO3 ppm /wt maximum remaining oil content (inlet temperature /pressure of 70°F / 100 PSIG) when analyzed using infra red spectrophotometry based on the Pneurop 6611 procedure; removal of hydrocarbon vapors and odors.

Air Quality Class *

Conforms to ISO 8573, better than Class 1

Flow

Inside to outside

Filter Media

Snow storm flled activated carbon for optimum packing density and life.

Support Structure

Model M03 - M28: Clear plastic housing with molded plastic end cap. Integral outlet fiter. Model M30 - M45: Inner and outer

304 Stainless Steel support sleeve cylinders

End Caps

Glass flled polyamide material **Initial Differential** Pressure Dry - M30 - M31: 3 PSID M32 - M45: 1 PSID Flow range - 5 to 4800 SCFM

Application

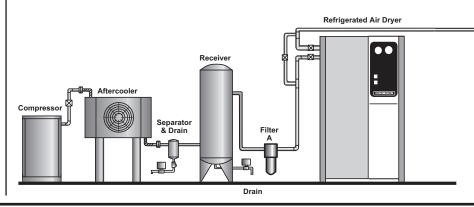
Installation after high efficiency coalescer for process air purification, odor removal, removal of trace vapors and for critical applications. * "M" Series Absorption Filters, with Type "D" activated carbon elements: All Wilkerson Type "M' Absorption Filters with Type "D" activated carbon elements exceed ISO Class 1 on maximum oil content (ppm /wt).

When Making Your Selection

- Generally, install fiters downstream of aftercoolers /separators and air receivers at the lowest temperature point and as close to the point of application as possible. This reduces the chance of additional water and oil vapor condensing after the fiter.
- 2) Filters should <u>not</u> be installed downstream of quick opening valves and should be protected from possible reverse fbw or other shock conditions.
- 3) It may be necessary to install a combination of mainline filtration near the compressor installation before entry to the main air distribution system as well as installing terminal filtration at the critical application points.

Remember, especially in existing installations, the contamination already in the pipe system downstream of the flters will take a long time to disappear and probably never will completely.

- Purge all lines leading from the fitters to the final application to be protected.
- 5) Install fitters in a vertical position ensuring that there is sufficient room below the fitters to facilitate element change.
- 6) Provide a facility to drain away collected liquids from the filter drains via properly sized tubing, taking care there are no restrictions in the drain line.
- 7) Install Wilkerson differential pressure gauge or pop-up indicator to monitor the pressure drop across the fiters. This will provide an easy way of visually monitoring the fiter element condition, indicating when to replace the element


If you have a problem on fiter selection or installation, please contact your local Wilkerson stocking distributor. Wilkerson and their representatives will be pleased to help you in selecting the proper installation for your application requirements.

8) For piping convenience and to minimize air system disruptions, we recommend piping the system with by-pass circuits and isolation valves.

General Purpose Protection

- General Compressed Air System Protection
- · Liquid and Solid Bulk Contamination Removal
- · Particle Removal in "Dry" Systems
- Large Pneumatic Tools
- Shot-blasting Air
- · Low Cost Automation—cylinders and valves
- Pre-Filtration for Refrigeration Air Dryers
- Pre-Filtration to High Efficiency Dryers
- Pre-Filtration to Adsorption Air Dryers in "Oil-Free" Systems
- Pre-Filtration to Air Sterilization Filters in "Oil-Free" Systems
- High Speed and /or Mniature Pneumatic Tools
- Air Gauging
- Air Conveying
- Air Motors
- Pipeline Purging
- Pre-Filtration to Adsorption Air Dryers in Oil Contaminated Systems
- Pre-Filtration to Air Sterilization Filters in Oil Contaminated Systems

Pneumatic Division Richland, Mchigan www.wilkersoncorp.com

Critical Applications — Clean and "Oil-Free"

Robotics

Air Logic

Instrumentation

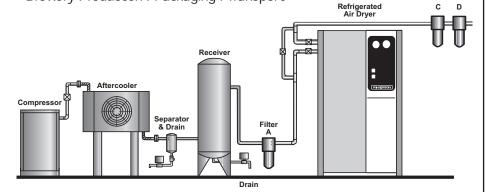
Air Bearings

Systems

WDH

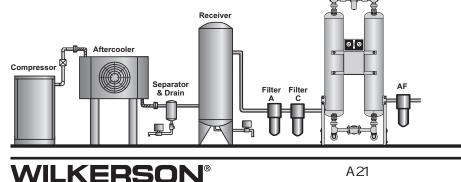
Heatless Regenerative Dryer

A21


Spray Painting

Temperature Control

с D


Where dew point is not required to be less than 36-40°F (22-4.4°C). Ambient temperature should not be below 45°F (7.2°C). For example, interior of factories.

- Highest Quality Clean, Oil and Odor Free Air
- Blow Molding of Plastic e.g. P.E.T. Bottles
- Film Processing
- Critical Instrumentation
- Advanced Pneumatics
- Air-Blast Circuit Breakers
- Decompression Chambers
- Cosmetic Production
- Foodstuffs Production / Packaging
- Pharmaceutical Production
- Dairy Production / Packaging / Transport
- Brewery Production / Packaging / Transport

Extremely Low Dew Point System

Where dew point must be below 32°F (O°C). For example, indoor factory installation of dryer, but where compressed air is to be used for outdoor application, or where low ppm water content in the air is required by the application.

When Making **Your Selection**

Always try to obtain as much information as possible including fbw rates, inlet pressure, temperature and pipe size.

Select filtration air quality required to the application to be protected. Remember, it is better to over-specify than not provide enough protection.

Select size of fiters by fbw rate and inlet pressure at the point of fltration. Also keep in mind pressure drop, if this is critical it may be advisable to oversize the fiters. Generally, for operating costs, it is best never to undersize flters. The higher pressure drop caused by undersizing actually increases system operating cost.

Be careful to consider working pressure drops. Although all fiters start dry, in time they become wetted with liquid (a normal condition) and this increases pressure drop. Select filters for the highest fbw rate and lowest working pressure they will operate under.

Check the pipe size of the installation. If possible, match pipe sizes. This may involve increasing the size of the flter. Never reduce the pipe size of the installation to match the fiter. The restriction caused by this is expensive in terms of pressure drop and operating costs and is ongoing. Increasing the size of the filter on the other hand reduces pressure drop and increases the time between element changes. This more than offsets the initial higher costs.

How You Read Flow Charts

Using Filter Graphs

- 1) From the graph select one of the inlet pressure curves to be used. 35 PSIG, 60 PSIG, etc.
- Decide upon the air fbw rate requirement for this application. (Refer to the horizontal air fbw rate scale located at the bottom of the graph.)
- 3) To find the initial pressure drop draw a vertical line from the fbw rate selected to a point where it crosses the inlet pressure curve. From this intersection draw a horizontal line to where it intersects the vertical pressure drop scale.

EXAMPLE:

At 15 SCFM fbw rate and 60 PSIG inlet pressure, pressure drop is about 4.3 PSID.

Using Regulator Graphs

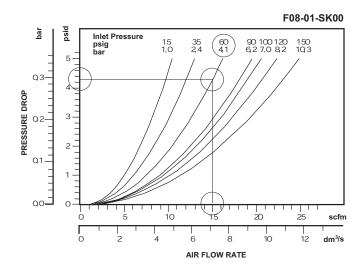
NOTE: Regulator graphs are based upon an inlet pressure of 100 PSIG.

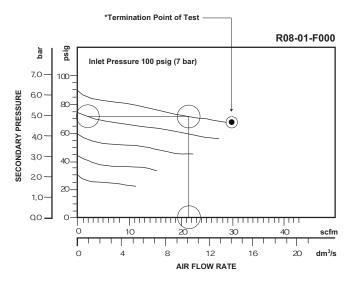
Maximum fbw capacity is measured at a point that is 75% of the initial secondary pressure setting. * (NFPA)

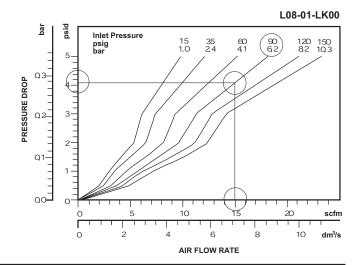
EXAMPLE:

Inlet Pressure = 100 PSIG,

Secondary Pressure @ OSCFM = 90PSIG, Secondary Pressure @ 21.5SCFM = 75PSIG, Pressure Drop @ 21.5SCFM = 15PSID.


- Using a graph selected by product family and pipe size pick the secondary pressure curve that fits
- 2) Determine the air fbw rate required from the air fbw rate scale located at the bottom of the graph.
- 3) To find the pressure drop for this regulator draw a vertical line from the air fbw rate selected to a point where it crosses the secondary pressure curve. From this intersection draw a horizontal line to where it intersects the vertical secondary pressure line. This is the secondary pressure at the fbw rated selected to determine full pressure drop. Subtract this pressure from the original secondary pressure used.


The Difference = Pressure Drop


Using Lubricator Graphs

WILKERSON®

- 1) From the graph select one of the inlet pressure curves to be used. 35 PSIG, 60 PSIG, etc.
- Decide the air fbw rate requirement for this application. (Refer to horizontal air fbw rate scale located at the bottom of the graph.)
- 3) To determine pressure drop draw a vertical line from the fbw rate selected to the point where it crosses the inlet pressure curve used. From this intersection draw a horizontal line to where it intersects the vertical pressure drop scale.
- NOTE: Pressure drop value should not be less than Q8PSID.

